\(\int \frac {a+b \log (c x^n)}{x^3 (d+e x^2)} \, dx\) [214]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (warning: unable to verify)
   Fricas [F]
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 83 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )} \, dx=-\frac {b n}{4 d x^2}-\frac {a+b \log \left (c x^n\right )}{2 d x^2}+\frac {e \log \left (1+\frac {d}{e x^2}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 d^2}-\frac {b e n \operatorname {PolyLog}\left (2,-\frac {d}{e x^2}\right )}{4 d^2} \]

[Out]

-1/4*b*n/d/x^2+1/2*(-a-b*ln(c*x^n))/d/x^2+1/2*e*ln(1+d/e/x^2)*(a+b*ln(c*x^n))/d^2-1/4*b*e*n*polylog(2,-d/e/x^2
)/d^2

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {2380, 2341, 2379, 2438} \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )} \, dx=\frac {e \log \left (\frac {d}{e x^2}+1\right ) \left (a+b \log \left (c x^n\right )\right )}{2 d^2}-\frac {a+b \log \left (c x^n\right )}{2 d x^2}-\frac {b e n \operatorname {PolyLog}\left (2,-\frac {d}{e x^2}\right )}{4 d^2}-\frac {b n}{4 d x^2} \]

[In]

Int[(a + b*Log[c*x^n])/(x^3*(d + e*x^2)),x]

[Out]

-1/4*(b*n)/(d*x^2) - (a + b*Log[c*x^n])/(2*d*x^2) + (e*Log[1 + d/(e*x^2)]*(a + b*Log[c*x^n]))/(2*d^2) - (b*e*n
*PolyLog[2, -(d/(e*x^2))])/(4*d^2)

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2379

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r_.))), x_Symbol] :> Simp[(-Log[1 +
d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)), x] + Dist[b*n*(p/(d*r)), Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])^
(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]

Rule 2380

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.))/((d_) + (e_.)*(x_)^(r_.)), x_Symbol] :> Dist[1/d,
 Int[x^m*(a + b*Log[c*x^n])^p, x], x] - Dist[e/d, Int[(x^(m + r)*(a + b*Log[c*x^n])^p)/(d + e*x^r), x], x] /;
FreeQ[{a, b, c, d, e, m, n, r}, x] && IGtQ[p, 0] && IGtQ[r, 0] && ILtQ[m, -1]

Rule 2438

Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
 e, n}, x] && EqQ[c*d, 1]

Rubi steps \begin{align*} \text {integral}& = \frac {\int \frac {a+b \log \left (c x^n\right )}{x^3} \, dx}{d}-\frac {e \int \frac {a+b \log \left (c x^n\right )}{x \left (d+e x^2\right )} \, dx}{d} \\ & = -\frac {b n}{4 d x^2}-\frac {a+b \log \left (c x^n\right )}{2 d x^2}+\frac {e \log \left (1+\frac {d}{e x^2}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 d^2}-\frac {(b e n) \int \frac {\log \left (1+\frac {d}{e x^2}\right )}{x} \, dx}{2 d^2} \\ & = -\frac {b n}{4 d x^2}-\frac {a+b \log \left (c x^n\right )}{2 d x^2}+\frac {e \log \left (1+\frac {d}{e x^2}\right ) \left (a+b \log \left (c x^n\right )\right )}{2 d^2}-\frac {b e n \text {Li}_2\left (-\frac {d}{e x^2}\right )}{4 d^2} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.89 \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )} \, dx=\frac {-\frac {b d n}{x^2}-\frac {2 d \left (a+b \log \left (c x^n\right )\right )}{x^2}-\frac {2 e \left (a+b \log \left (c x^n\right )\right )^2}{b n}+2 e \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {\sqrt {e} x}{\sqrt {-d}}\right )+2 e \left (a+b \log \left (c x^n\right )\right ) \log \left (1+\frac {d \sqrt {e} x}{(-d)^{3/2}}\right )+2 b e n \operatorname {PolyLog}\left (2,\frac {\sqrt {e} x}{\sqrt {-d}}\right )+2 b e n \operatorname {PolyLog}\left (2,\frac {d \sqrt {e} x}{(-d)^{3/2}}\right )}{4 d^2} \]

[In]

Integrate[(a + b*Log[c*x^n])/(x^3*(d + e*x^2)),x]

[Out]

(-((b*d*n)/x^2) - (2*d*(a + b*Log[c*x^n]))/x^2 - (2*e*(a + b*Log[c*x^n])^2)/(b*n) + 2*e*(a + b*Log[c*x^n])*Log
[1 + (Sqrt[e]*x)/Sqrt[-d]] + 2*e*(a + b*Log[c*x^n])*Log[1 + (d*Sqrt[e]*x)/(-d)^(3/2)] + 2*b*e*n*PolyLog[2, (Sq
rt[e]*x)/Sqrt[-d]] + 2*b*e*n*PolyLog[2, (d*Sqrt[e]*x)/(-d)^(3/2)])/(4*d^2)

Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.49 (sec) , antiderivative size = 317, normalized size of antiderivative = 3.82

method result size
risch \(\frac {b \ln \left (x^{n}\right ) e \ln \left (e \,x^{2}+d \right )}{2 d^{2}}-\frac {b \ln \left (x^{n}\right )}{2 d \,x^{2}}-\frac {b \ln \left (x^{n}\right ) e \ln \left (x \right )}{d^{2}}-\frac {b n e \ln \left (x \right ) \ln \left (e \,x^{2}+d \right )}{2 d^{2}}+\frac {b n e \ln \left (x \right ) \ln \left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 d^{2}}+\frac {b n e \ln \left (x \right ) \ln \left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 d^{2}}+\frac {b n e \operatorname {dilog}\left (\frac {-e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 d^{2}}+\frac {b n e \operatorname {dilog}\left (\frac {e x +\sqrt {-d e}}{\sqrt {-d e}}\right )}{2 d^{2}}-\frac {b n}{4 d \,x^{2}}+\frac {b n e \ln \left (x \right )^{2}}{2 d^{2}}+\left (-\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i c \right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}+\frac {i b \pi \,\operatorname {csgn}\left (i x^{n}\right ) \operatorname {csgn}\left (i c \,x^{n}\right )^{2}}{2}-\frac {i b \pi \operatorname {csgn}\left (i c \,x^{n}\right )^{3}}{2}+b \ln \left (c \right )+a \right ) \left (\frac {e \ln \left (e \,x^{2}+d \right )}{2 d^{2}}-\frac {1}{2 d \,x^{2}}-\frac {e \ln \left (x \right )}{d^{2}}\right )\) \(317\)

[In]

int((a+b*ln(c*x^n))/x^3/(e*x^2+d),x,method=_RETURNVERBOSE)

[Out]

1/2*b*ln(x^n)*e/d^2*ln(e*x^2+d)-1/2*b*ln(x^n)/d/x^2-b*ln(x^n)*e/d^2*ln(x)-1/2*b*n*e/d^2*ln(x)*ln(e*x^2+d)+1/2*
b*n*e/d^2*ln(x)*ln((-e*x+(-d*e)^(1/2))/(-d*e)^(1/2))+1/2*b*n*e/d^2*ln(x)*ln((e*x+(-d*e)^(1/2))/(-d*e)^(1/2))+1
/2*b*n*e/d^2*dilog((-e*x+(-d*e)^(1/2))/(-d*e)^(1/2))+1/2*b*n*e/d^2*dilog((e*x+(-d*e)^(1/2))/(-d*e)^(1/2))-1/4*
b*n/d/x^2+1/2*b*n*e/d^2*ln(x)^2+(-1/2*I*b*Pi*csgn(I*c)*csgn(I*x^n)*csgn(I*c*x^n)+1/2*I*b*Pi*csgn(I*c)*csgn(I*c
*x^n)^2+1/2*I*b*Pi*csgn(I*x^n)*csgn(I*c*x^n)^2-1/2*I*b*Pi*csgn(I*c*x^n)^3+b*ln(c)+a)*(1/2*e/d^2*ln(e*x^2+d)-1/
2/d/x^2-e/d^2*ln(x))

Fricas [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x^{2} + d\right )} x^{3}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/x^3/(e*x^2+d),x, algorithm="fricas")

[Out]

integral((b*log(c*x^n) + a)/(e*x^5 + d*x^3), x)

Sympy [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )} \, dx=\text {Timed out} \]

[In]

integrate((a+b*ln(c*x**n))/x**3/(e*x**2+d),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x^{2} + d\right )} x^{3}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/x^3/(e*x^2+d),x, algorithm="maxima")

[Out]

1/2*a*(e*log(e*x^2 + d)/d^2 - 2*e*log(x)/d^2 - 1/(d*x^2)) + b*integrate((log(c) + log(x^n))/(e*x^5 + d*x^3), x
)

Giac [F]

\[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )} \, dx=\int { \frac {b \log \left (c x^{n}\right ) + a}{{\left (e x^{2} + d\right )} x^{3}} \,d x } \]

[In]

integrate((a+b*log(c*x^n))/x^3/(e*x^2+d),x, algorithm="giac")

[Out]

integrate((b*log(c*x^n) + a)/((e*x^2 + d)*x^3), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \log \left (c x^n\right )}{x^3 \left (d+e x^2\right )} \, dx=\int \frac {a+b\,\ln \left (c\,x^n\right )}{x^3\,\left (e\,x^2+d\right )} \,d x \]

[In]

int((a + b*log(c*x^n))/(x^3*(d + e*x^2)),x)

[Out]

int((a + b*log(c*x^n))/(x^3*(d + e*x^2)), x)